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ABSTRACT 

 In this paper, the authors deal with the reliability and time to failure of a complex system model. This complex 

system contains  two subsystem A and B, Where system Acontains N units 

parallel. Failure of any one unit of A gives failure of subsystem A, hence the whole system fails but failure of one unit of 

B does not fail the whole system. We have assumed 2

follow exponential time distribution whereas the repairs follow general time distribution.

KEYWORDS:  Markovianprocess, Supplementary Variable Technique, 

Exponential Time Distribution 

INTRODUCTION 

 In the present paper we study acomplex system modeland obtain various reliability characteristics which are of 

interests to system designers and operation managers. We obtain these characteristics by using supplementary variable 

techniques. In our system, we have taken a general model transit system under head of line repair policy. The system 

contains two subsystems A and B. where system A contains N units in series and system B contains M units in parallel. By 

virtue of arrangements of units in the system, failure of any one unit of A results in the  failure of the whole subsystem A 

and thereby breaking down the whole system, whereas the failure of any one unit of B does not result in the failure of the 

subsystem B and so the system continue to function. We have assumed 2

B fail then we find the degraded state and i9f more than 2 unit fail, it results in the failure of whole system. Hence system

will fail if either any 1 of the units  in A fails or if 3 or more units of B fail. The repair carried out only when the system 

breaks down and each repair makes the system as good as it was in original condition. All the failure time distributions are 

taken to be negative exponential while the repa

is shown in figure 1.1. 

ASSUMPTIONS 

1. Initially, all components of the system are good. 

2. The reliability of each components of the system is known in advance. In one state ,only

place. 

3. The state of each components of the system is either good or bad.

4. The state of all components is independent. The failure times of all components are

5. After repair the system works as good as new.
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NOTATIONS AND STATES OF THE SYSTEMS 

)t(P)t(P 1m
N

m
N

−
 :       Probability that the system is in working state at time t when m/m-1 units of sub 

system B are in working state, respectively. 

P
2m

N
−

(t)          : probability that the system is in degraded state at time t due to failure of 2 units of 

subsystem B. 

u i : failure rate of i
th

 unit of subsystem A. 

V j: failure rate of j
th

unit of subsystem B. 
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iα (x)   :   Repair rate of i
th

subsystem,   hi : Human error rate of failure. 

 

Figure 1.0: Transition Diagram 

 

MATHEMATICAL FORMULATION OF THE MODEL 

 Simple probabilistic considerations and limiting procedure yields the following set of difference-differential 

equations for the stochastic process which is continuous in time and discrete in space.  
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Basic Equations  

N
m m m 3

1 1 N i i N 3
i 1 0 0

d
u v h P (z) P (x,z)a (x)dx P (y,z)b (y)dy

dz

∞ ∞
−

=

 + + + = +  
∑ ∫ ∫ N h

0

P (z, t)c (z)dz
∞

+ ∫
.

.       (1) 

m 1 m
2 2 N 1 N

d
u v h P ( z ) v P ( z )

d z
− + + + =    

…………………………….      (2) 

m
i ia ( x ) p ( x , z ) 0

x z

∂ ∂ + + = ∂ ∂ 
 …………………………….      (3) 

m 1
1 ib ( y ) p ( y , z ) 0

y z
− ∂ ∂+ + = ∂ ∂ 

 ……………………………      .(4) 

3 3

d
u v h

d z
 + + +  

m 2 m 1
N NP (z) 2P (z)− −=  …………………………       (5) 

m 2
2 ib ( y ) P ( y , z ) 0

y z
− ∂ ∂+ + = ∂ ∂ 

 ………………………………       (6)

m 3
3 Nb ( y ) P ( y , z ) 0

y z
− ∂ ∂+ + = ∂ ∂ 

 ………………………………       (7) 

n Hc ( z ) P ( z , z ) 0
z z

∂ ∂ + + = ∂ ∂ 
 ………………………………       (8) 

Boundary Conditions  

Pm m m 1 m 2
i N i 1 i 2

0 0

(0 , z ) u P (z ) P ( y , z )b ( y )dy P ( y , z )b ( y )dy
∞ ∞

− −= + +∫ ∫  …….      (9) 

m 1 m 1
i NP (0 , z ) u P ( z )− −=  …….    (10) 

m 2 m 2
i NP ( 0 , z ) u P ( z )− −=  ……     (11) 

m 3 m 2
i 3 NP (0 , z ) v P ( z )− −=  

…….     (12) 

m m 1 m 2
N 1 N 2 N 3 NP (0,z) h P (z) h P (z) h P (z)− −= + +  ………     (13) 

Initial Condition: It is assumed that the system initially starts from 

1)0(Pm
N = ,otherwise zero. …….    (14) 

SOLUTION OF THE MODEL 

Taking Laplace Transform of the equations (1) through (13) and then, on solving them subjected to (14), we obtain:

[ ]
Nm m m 3

N i1 1 i N 30 0
i 1

s u v h P (s ) 1 P ( x , s )a ( x )d x P ( y , s ) b ( y )d y
∞ ∞ −

=
+ + + = + +∑ ∫ ∫

N h

0

P (z , s )c (z )dz
∞

+ ∫
 

…….           (15) 

[ ] m 1 m
N N2 2 1s u v h P (s) v P (s)

−
+ + + =  ……     (16) 



30                                Dhanpal Singh, C.K.Goel & Baljeetkour 

 

m
iis a (x) P (x,s) 0

x

∂ + + = ∂ 
 

…….     (17) 

m 1
1 is b (y ) P ( y, s) 0

y
− ∂ + + = ∂   

…….     (18) 

[ ] m 2 m 1
3 3 N 2 Ns u v h P (s) v P (s)− −+ + + =

 
……     (19) 

m 2
2 is b ( y ) P ( y, s) 0

y
− ∂ + + = ∂    

…….     (20) 

m 3
3 is b ( y ) P ( y , s ) 0

y
− ∂ + + = ∂    

…….     (21) 

h Ns c (z ) P (z , s) 0
z

∂ + + = ∂    

…….     (22) 

m m m 1 m 2
i N i 1 i 20 0

P (0,s) u P (s) P ( ,s)b (y)dy P ( ,s)b (y)dy
∞ ∞− −= + ∂ + ∂∫ ∫  

……      (23) 

m 1 m 1
i NP (0 , s ) u P (s )− −=   …….     (24) 

m 2 m 2
i NP (0 , s ) u P (s )− −=   …….     (25) 

m 3 m 2
i 3 NP (0 , s ) v P (s )− −=   

…….     (26) 

m m 1 m 2
H 1 N 2 N 3 NP (0,s) h P (s) h P (s) h P (s)− −= + + …….(27) 

Now from equations (16) &(18-22) we get 

m
m 1 1 N
N

2 2

v P (s )
P (s )

s u v h
− =

+ + +   

…….     (28) 

m
m 1 1 N
i 1

2 2

u v P (s )
P (s ) D (s )

s u v h
− =

+ + +   

……     (29) 

m
m 2 1 2 N
N

2 2 3 3

v v P (s )
P (s )

(s u v h )(s u v h )
− =

+ + + + + +  

……     (30) 

m
m 2 1 2 N
N 2

2 2 3 3

u v v P (s)
P (s) D (s)

(s u v h )(s u v h )
− =

+ + + + + +  

…….     (31) 

m
m 3 1 2 3 N
N 3

2 2 3 3

v v v P (s )
P (s ) D (s )

(s u v h )(s u v h )
− =

+ + + + + +  

……     (32) 

m 3 21
N N 1 2 h

2 2 3 3

h vv
P (s) P (s) h h D (s)

s u v h s u v h

  
= + +  + + + + + +        

 (33) 

Also from equation (17), we get 
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2m m 1 2
1i N i

2 2 3 3

v v S (s)
P (s) u P (s) 1 S (s) D (s)

s u v h s u v h

  
= + +  + + + + + +   

......      (34)

 

Finally, m
N

1
P (s )

A (s )
=

  

…….     (35) 

where 

1 2 2
1 1 1

2 2 3 3

v v S (s)
A(s) s u v h u 1 {S (s)

s u v h s u v h

 = + + + − + + + + + + + + 
 …….   (35a) 

31 2 3 1 2 2
i 1 2 h

2 2 3 3 2 2 3 3

v v v S (s) v h v
S (s) h h S (s)

(s u v h ) (s u v h ) s u v h s u v h

  
− + +  + + + + + + + + + + + +  

….    (36) 

Now, Let 

1

2 2

v
B(s)

(s u v h )
=

+ + +
& 2

3 3

v
C (s)

(s u v h )
=

+ + +
Then 

Finally, we may obtain 

m
N

1
P (s )

A (s )
=

  

……     (37) 

m 1
N

B (s )
P (s )

A (s )
− =

  

…….     (38) 

m 1
i 1

u B(s)
P (s) D (s)

A (s)
− =

  

……     (39) 

m 2
N

B (s ) C (s )
P (s )

A (s )
− =

  

……     (40) 

m 2
i 2

u B (s ) C (s )
P (s ) D (s )

A (s )
− =

  

…….     (41) 

m 3 3
N 3

v B(s)C (s)
P (s) D (s)

A (s)
− =

  

……     (42) 

{ }H 1 2 3 h

1
P (s ) h B (s ) h h C (s ) D (s )

A (s )
= + +  

 

……     (43) 

{ }m
1 2i i

u
P (s) 1 B(s) S (s) S (s)C (s) D (s)

A (s)
 = + +
 

 

……    .(44) 

Where 

{ }1 21 1A (s ) s u v h u 1 B (s ) S (s ) S (s ) C (s ) = + + + − + +
   

{ }i 3 h3 1 2 3S (s) v B(s)C(s)S (s) h B(s) h h C(s) S (s)− − + +    
…….     (45) 
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SOME PARTICULAR CASES 

Now if we consider the situation where repair follows exponential time distribution , then putting i
i

i

S (s)
s

µ=
+ µ

 for 

all i  and s in equations (37)  gives. 

m
N

1
P (s)

E (s)
=

 

…….     (46) 

m 1
N

B(s)
P (s)

E (s)
− =

 

……     (47) 

m 1
i

1

u B (s) 1
P (s) .

E (s) s b
− =

+  

……     (48) 

m 2
N

B(s).C(s)
P (s)

E(s)
− =

 

…….     (49) 

m 2
i

2

uB(s)C(s) 1
P (s) .

E (s) s b
− =

+  

……     (50) 

m 3 3
N

3

u B(s)C(s) 1
P (s) .

E (s) s b
− =

+  

…….     (51) 

{ }N 1 2 3
h

1 1
P (s) h B(s) h h C(s)

E (s) s C
= + +   +  

…….     (52) 

m 1 2
i

1 2

b b c(s)u 1
P (s) 1 B(s)

E (s) s b s b s ai

  
= + +  + + +    

…….     (53) 

Where 

31 2 i
1 1 3

1 2 i 3

bb b c(s) a
E (s) s u v h u 1 B (s) v B (s) c (s)

s b s b s a s b

  
= + + + − + + −  + + + +  

 

{ } h
1 2 3

h

c
h B(s) h h c(s)

s c
+ +   +

 

…….     (54) 

ERGODIC BEHAVIOUR OF THE SYSTEMS 

By making use of Abel’s Lemma 
S 0 t
lim P (s) lim P ( t ) P

→ → ∞
= = (say)(Provided the limit on right exists) , we have the 

following time independent state probabilities from equations (37) through (44). 

m
N

1
P

A ( 0 )
=

′  

…….     (55) 

m 1 1
N

2 2

1 v
P .

A (0 ) u v h
− =

′ + +  

…….     (56) 
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m 1 1
i 1

2 2

u v
P . .m

A (0) u v h
− =

′ + +  

…….     (57)

 

m 2 1 2
N

2 2 2 3

1 v v
P .

A (0) (u v h )(u v h )
− =

′ + + + +  

……    (58) 

m 2 1 2
i 2

2 2 2 3

u v v
P . m

A (0) (u v h )(u v h )
− =

′ + + + +  

…….       (59) 

m 3 1 2 3
N 3

2 2 3 3

1 v v v
P . m

A (0) (u v h )(u v h )
− =

′ + + + +  

……     (60) 

1 2 3
N 1 2 h

2 2 3 3

1 v v h
P h h m

A (0) u v h u v h

  
= + +  ′ + + + +    

…….     (61) 

m 1 2
i i

2 2 3 3

v vu
P 1 1 m

A (0) u v h u v h

  
= + +  ′ + + + +    

…….     (62) 

where

s 0

d
A (0) A(s)

ds =

 ′ =   
& kkm S (0) k 1 , 2 , 3 , h , i′= − ∀ =  

ANALYSIS OF CHARACTERISTICS 

(A) The reliability of the system R(t) in terms of its Laplace transformation is 

[ ])t(RT.L)s(R =  

This can be obtained by assuming the failed states as absorbing i.e. repair rate to be zero. 

[ ]m m 1 m 2
N N N

1
R (s) P (s) P (s) P (s) 1 B(s) B(s).C(s)

E (s)
− −= + + = + +  ……     (63) 

on taking inverse Laplace Transform, one may get reliability of the system. 

{ }1
1 2 1 1

2 2 1 1

v
R (t) 1 v v D Exp. (h v u )z

h v h v

 
= + + − + + + − − 

 

{ }1
1 2 2 2

2 2 1 1

v
v v E Exp. (h v u)z

h v h u

 
+ + − + + + − − 

 

{ }1 2 3 3v v F Exp. (h v u)z+ − + +
 

……     (64) 

Where 

2 2 1 1 3 3 1 1

1
D

(h v h v )(h v h v )
=

+ − − + − −  

……     (65) 

2 2 1 1 3 3 2 2

1
E

(h v h v )(h v h v )
= −

+ − − + − −  

……     (66) 
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and 

3 3 1 1 3 3 2 2

1
F

(h v h v )(h v h v )
=

+ − − + − −  

……     (67) 

(B) The mean time to system failure is 

MTSF = 
S 0
limR(s)

→
 

MTSF = 1
1 2

2 2 1 1 1 1

v 1
1 v v D

h u h v u h v

 
+ + + − − + + 

 

1 1 2
2 1

2 2 1 1 2 2 3 3

v v v F1
v v E

h v h v u h v u h v

 
+ + + + − − + + + +   

……     (68) 

Where D, E and F are mentioned in earlier equations. (65), (66) and (67) respectively. 

NUMERICAL COMPUTATION 

Let us consider the following values depending upon the significance of the components as h1 = 

0.01,h2=0.03,h3=0.05,v1=0.002,v2=0.004, v3 = 0.006, u = 0.05 and t = 0, 1, 2, 3…..then we get  

1
D 1033.05785

(0.022)(0.044)
= =  

1
E 2066.1157024

(0 .022)(0 .022)
= = −  

and
1

F 1033.05785
(0.044)(0.022)

= =  

Using these values in relation (64) and (63) we get 

R(t) =(1.0991735)e-0.062t + (−0.10743801)e−0.084t + (0.0082644)e−0.106t              …. ……     (69) 

The mean time to system failure with respect to u (failure rate of units of components of the system) is  

*

s 0
M T SF lim R (S)

→
=  

1 1 2 2

1 2

1 1
M T SF (1.0991735). ( 0 .10743801).

u h v u h v

1
(0.0082644)

u h v

∴ = + −
+ + + +

+
+ +

 

                   = 
1.00991735 0.10743801 0.0082644

0.012 u 0.034 u 0.056 u
− +

+ + +
 ……     (70) 

Now for t = 0,1, 2, 3….. in equation (69), the reliability is shown in  Figure 2.0 
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Now for u = 0, 1, 2, …..in Equation (70). The MTSF is shown in figure

 

CONCLUSIONS 

 From the graph illustration of R(t) as shown in figure 2.0,It is concluded that  as time increases the reliability(R(t)) 

of the system decreases rapidly and from the figure 3.0

 It is concluded that as the failure rate(u) increases,the value of MTSF decreases very smoothly and

decreases whereas the values of u increases. So increment of any failure rate gives the smoothly decrement in the value of 

MTSF and profit function. 
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of the system decreases rapidly and from the figure 3.0.  

It is concluded that as the failure rate(u) increases,the value of MTSF decreases very smoothly and

decreases whereas the values of u increases. So increment of any failure rate gives the smoothly decrement in the value of 
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